3 research outputs found

    Statistical shape analysis of neuroanatomical structures based on spherical wavelet transformation

    Get PDF
    Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2008.Includes bibliographical references.Evidence suggests that morphological changes of neuroanatomical structures may reflect abnormalities in neurodevelopment, or relate to a variety of disorders, such as schizophrenia and Alzheimer's disease (AD). Advances in high-resolution Magnetic Resonance Imaging (MRI) techniques allow us to study these alterations of brain structures in vivo. Previous work in studying the shape variations of brain structures has provided additional localized information compared with traditional volume-based study. However, challenges remain in finding an accurate shape presentation and conducting shape analysis with sound statistical principles. In this work, we develop methods for automatically extracting localized and multi-scale shape features and conducting statistical shape analysis of neuroanatomical structures obtained from MR images. We first develop a procedure to extract multi-scale shape features of brain structures using biorthogonal spherical wavelets. Using this wavelet-based shape representation, we build multi-scale shape models and study the localized cortical folding variations in a normal population using Principal Component Analysis (PCA). We then build a shape-based classification framework for detecting pathological changes of cortical surfaces using advanced classification methods, such as predictive Automatic Relevance Determination (pred-ARD), and demonstrate promising results in patient/control group comparison studies. Thirdly, we develop a nonlinear temporal model for studying the temporal order and regional difference of cortical folding development based on this shape representation. Furthermore, we develop a shape-guided segmentation method to improve the segmentation of sub-cortical structures, such as hippocampus, by using shape constraints obtained in the wavelet domain.(cont.) Finally, we improve upon the proposed wavelet-based shape representation by adopting a newly developed over-complete spherical wavelet transformation and demonstrate its utility in improving the accuracy and stability of shape representations. By using these shape representations and statistical analysis methods, we have demonstrated promising results in localizing shape changes of neuroanatomical structures related to aging, neurological diseases, and neurodevelopment at multiple spatial scales. Identification of these shape changes could potentially lead to more accurate diagnoses and improved understanding of neurodevelopment and neurological diseases.by Peng Yu.Ph.D

    Continuous relaxation to over-constrained temporal plans

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesis.Includes bibliographical references (p. 165-168).When humans fail to understand the capabilities of an autonomous system or its environmental limitations, they can jeopardize their objectives and the system by asking for unrealistic goals. The objective of this thesis is to enable consensus between human and autonomous system, by giving autonomous systems the ability to communicate to the user the reasons for goal failure and the relaxations to goals that archive feasibility. We represent our problem in the context of temporal plans, a set of timed activities that can represent the goals and constraints proposed by users. Over-constrained temporal plans are commonly encountered while operating autonomous and decision support systems, when user objectives are in conflict with the environment. Over constrained plans are addressed by relaxing goals and or constraints, such as delaying the arrival time of a trip, with some candidate relaxations being preferable to others. In this thesis we present Uhura, a temporal plan diagnosis and relaxation algorithm that is designed to take over-constrained input plans with temporal flexibility and contingencies, and generate temporal relaxations that make the input plan executable. We introduce two innovative approaches within Uhura: collaborative plan diagnosis and continuous relaxation. Uhura focuses on novel ways of satisfying three goals to make the plan relaxation process more convenient for the users: small perturbation, quick response and simple interaction. First, to achieve small perturbation, Uhura resolves over-constrained temporal plans through partial relaxation of goals, more specifically, through the relaxation of schedules. Prior work on temporal relaxations takes an all-or-nothing approach in which timing constraints on goals, such as arrival times to destinations, are completely relaxed in the relaxations. The Continuous Temporal Relaxation method used by Uhura adjusts the temporal bounds of temporal constraints to minimizes the perturbation caused by the relaxations to the goals in the original plan. Second, to achieve quick responses, Uhura introduces Best-first Conflict-directed Relaxation, a new method that efficiently enumerates alternative options in best-first order. The search space of alternative options to temporal planning problems is very large and finding the best one is a NP-hard problem. Uhura empirically demonstrates fast enumeration by unifying methods from minimal relaxation and conflict-directed enumeration methods, first developed for model based diagnosis. Uhura achieves two orders of magnitude improvement in run-time performance relative to state-of-the-art approaches, making it applicable to a larger group of real-world scenarios with complex temporal plans. Finally, to achieve simple interactions, Uhura presents to the user a small set of preferred relaxations in best-first order based on user preference models. By using minimal relaxations to represent alternative options, Uhura simplifies the options presented to the user and reduces the size of its results and improves their expressiveness. Previous work either generates minimal relaxations or full relaxations based on preference, but not minimal relaxations based on preference. Preferred minimal relaxations simplify the interaction in that the users do not have to consider any irrelevant information, and may reach an agreement with the autonomous system faster. Therefore it makes communication between robots and users more convenient and precise. We have incorporated Uhura within an autonomous executive that collaborates with human operators to resolve over-constrained temporal plans. Its effectiveness has been demonstrated both in simulation and in hardware on a Personal Transportation System concept. The average runtime of Uhura on large problems with 200 activities is two order of magnitude lower compared to current approaches. In addition, Uhura has also been used in a driving assistant system to resolve conflicts in driving plans. We believe that Uhura's collaborative temporal plan diagnosis capability can benefit a wide range of applications, both within industrial applications and in our daily lives.by Peng Yu.S.M

    Collaborative diagnosis of over-subscribed temporal plans

    No full text
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.Cataloged from PDF version of thesis.Includes bibliographical references (pages 193-197).Over-subscription, that is, being assigned too many tasks or requirements that are too demanding, is commonly encountered in temporal planning problems. As human beings, we often want to do more than we can, ask for things that may not be available, while underestimating how long it takes to perform each task. It is often difficult for us to detect the causes of failure in such situations and then find resolutions that are effective. We can greatly benefit from tools that assist us by looking out for these plan failures, by identifying their root causes, and by proposing preferred resolutions to these failures that lead to feasible plans. In recent literature, several approaches have been developed to resolve such oversubscribed problems, which are often framed as over-constrained scheduling, configuration design or optimal planning problems. Most of them take an all-or-nothing approach, in which over-subscription is resolved through suspending constraints or dropping goals. While helpful, in real-world scenarios, we often want to preserve our plan goals as much possible. As human beings, we know that slightly weakening the requirements of a travel plan, or replacing one of its destinations with an alternative one is often sufficient to resolve an over-subscription problem, no matter if the requirement being weakened is the duration of a deep-sea survey being planned for, or the restaurant cuisine for a dinner date. The goal of this thesis is to develop domain independent relaxation algorithms that perform this type of slight weakening of constraints, which we will formalize as continuous relaxation, and to embody them in a computational aid, Uhura, that performs tasks akin to an experienced travel agent or ocean scientists. In over-subscribed situations, Uhura helps us diagnose the causes of failure, suggests alternative plans, and collaborates with us in order to resolve conflicting requirements in the most preferred way. Most importantly, the algorithms underlying Uhura supports the weakening, instead of suspending, of constraints and variable domains in a temporally flexible plan. The contribution of this thesis is two-fold. First, we developed an algorithmic framework, called Best-first Conflict-Directed Relaxation (BCDR), for performing plan relaxation. Second, we use the BCDR framework to perform relaxation for several different families of plan representations involving different types of constraints. These include temporal constraints, chance constraints and variable domain constraints, and we incorporate several specialized conflict detection and resolution algorithms in support of the continuous weakening of them. The key idea behind BCDR's approach to continuous relaxation is to generalize the concepts of discrete conflicts and relaxations, first introduced by the model-based diagnosis community, to hybrid conflicts and relaxations, which denote minimal inconsistencies and minimal relaxations to both discrete and continuous relaxable constraints. In addition, we present the design and implementation of Uhura, the integrated plan advisory system that incorporates BCDR for resolving over-subscribed temporal plans. Uhura can efficiently produce a relaxed plan for the user to support multiple, interrelated constraints and activities. We have applied Uhura to different types of plans to illustrate the practical generality of our approach, which includes deepsea exploration, job-shop scheduling and transit system management. Results from the computational experiments we performed also show that BCDR is one to two orders of magnitude faster than existing algorithms that build on state-of-the-art numerical solvers, making it an effective approach for many large-scale plans in the aforementioned domains.by Peng Yu.Ph. D
    corecore